Hexagon Calculator with Right Triangle
Enter the side length of the hexagon:
Here’s a table comparing a Hexagon and a Right Triangle, covering key properties and characteristics:
Property | Hexagon | Right Triangle |
---|---|---|
Definition | A polygon with six sides | A triangle with one 90° angle |
Number of Sides | 6 | 3 |
Number of Angles | 6 | 3 |
Sum of Interior Angles | (6−2)×180°=720°(6-2) \times 180° = 720°(6−2)×180°=720° | (3−2)×180°=180°(3-2) \times 180° = 180°(3−2)×180°=180° |
Interior Angles (Regular) | Each angle is 120° | One angle is 90°, others depend on side lengths |
Types | Regular, Irregular, Concave, Convex | Isosceles, Scalene, Special (45°-45°-90° or 30°-60°-90°) |
Area Formula | A=332s2A = \frac{3\sqrt{3}}{2} s^2A=233s2 (regular) | A=12×base×heightA = \frac{1}{2} \times base \times heightA=21×base×height |
Perimeter Formula | P=6sP = 6sP=6s (regular) | P=a+b+cP = a + b + cP=a+b+c |
Diagonals | 9 | 0 (no diagonals in a triangle) |
Lines of Symmetry (Regular) | 6 | 1 (if isosceles), 0 (if scalene) |
Rotational Symmetry | 6-fold (if regular) | None (only 180° for an isosceles right triangle) |
Real-World Examples | Honeycomb, nuts, tiles | Roofs, ramps, support structures |