Hexagon Area Calculator with Apothem
This table provides key reference values for estimating the area of a regular hexagon based on different side lengths and corresponding apothem values.
📊 Hexagon Area with Apothem Table
Side Length (mm) | Apothem (mm) | Hexagon Area (mm²) |
---|---|---|
10 | 8.66 | 259.81 |
20 | 17.32 | 1039.23 |
30 | 25.98 | 2338.58 |
40 | 34.64 | 4156.90 |
50 | 43.30 | 6494.17 |
60 | 51.96 | 9350.40 |
70 | 60.62 | 12725.57 |
80 | 69.28 | 16619.69 |
90 | 77.94 | 21032.77 |
100 | 86.60 | 25964.79 |
150 | 129.90 | 58430.78 |
200 | 173.21 | 103859.16 |
250 | 216.51 | 162279.89 |
300 | 259.81 | 233692.97 |
🛠How to Use This Table
- Find the side length → Choose the length of a single side of the hexagon.
- Look up the corresponding apothem and area:
- Apothem = Distance from the center to the middle of a side.
- Hexagon Area = Total area covered by the hexagon.
- Use these values in engineering, CNC machining, material estimation, and layout planning.
📌 How Are Area & Apothem Calculated?
The formulas used:
- Apothem Calculation: Apothem=32×Side Length\text{Apothem} = \frac{\sqrt{3}}{2} \times \text{Side Length}Apothem=23​​×Side Length
- Hexagon Area Using Apothem: Area=12×Perimeter×Apothem\text{Area} = \frac{1}{2} \times \text{Perimeter} \times \text{Apothem}Area=21​×Perimeter×Apothem Where:
- Perimeter = 6×Side Length6 \times \text{Side Length}6×Side Length.
✅ Key Takeaways
- Larger side lengths result in larger apothems and areas.
- Hexagons are efficient for space utilization (honeycombs, floor tiles, mechanical gears).
- Used in engineering, architecture, tiling, CNC machining, and fabrication.
- Essential for material estimation in sheet metal cutting, 3D modeling, and industrial applications.